
Empty interatomic space in computer models of simple liquids and amorphous solids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 5685

(http://iopscience.iop.org/0953-8984/5/32/001)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 01:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/32
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


-~ I. Phys.: Condens. Matter 5 (1993) 5685-5700. Printed in the UK 

Empty interatomic space in computer models of simple liquids 
and amorphous solids 

~ ~ 

V P Voloshm and Yu I Naberukhin 
Institote of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia 

Received~Z October 1992, in final form 23 March 1993 

Abstract It is suggested to define the cavities that make up the empty interatomic space 
of any atomic model as associated overlapping interstitial spheres. The latter are determined 
unambiguously by the atomic arrangement with the help of the Voronoi-Delaunay methods for 
the division of space into polyhedra lhu any complex cavity may be represented as a cluster 
of contiguous Delaunay simplices. These clusters are revealed by percolation analysis with 
the application of a special '6 colouring' of the Voronoi network bonds. This paper presents 
a classification of all complex cavities discovered in computer models of clystals, liquids and 
amorphous solids. The number of cavity types is rather large and does not reduce to, say, the 
five & o n i d  holes of Bemal. The latter occupy less than half of the volume. The paxt 
of the cavities represent branched chains with built-in rings of simplicial holes, octahedra and 
so on. Large clusters of more than 10 simplices are characteristic of liquids but they do not 
occur in amorphous solids. 

1. Introduction 

The structure of disordered systems (liquids, amorphous solids) can be characterized not only 
by atomic arrangement, but also by the form of the empty interatomic space. This possibility 
has long been used in crystallography to describe crystal shmcture; it was first applied to 
simple liquids by Bernal (1964, 1965). As is known, the close-packed crystals contain only 
two types of interatomic hole: tetrahedral and octahedral ones. Bernal believed that the 
idealized model of a dense liquid can be represented as an assembly of only five types of 
'canonical' hole. Later, however, Bernal's ideas were thoroughly analysed on computer 
models of simple liquids and amorphous solids, and a great variety of 'non-canonical' hole 
configurations were revealed (Whittaker 1978, Ahmadzadeh and Cantor 1981, Frost 1982, 
LanGon et al 1984). Thus one was forced to abandon the optimistic expectation of being 
able to describe liquid structure by a small number of shuctural elements. 

It is characteristic of the above works that they used different definitions of the hole 
configurations, all of which are, strictly speaking, arbitrary. This defect may hardly be 
remedied since it is impossible to indicate the exact quantitative criterion in a disordered 
system that could separate one type of configuration from others. However, one can always 
speak about more useful, simpler or more natural criteria. In this paper we continue the 
analysis of empty interatomic space using the Voronoi-Delaunay theory of the division of 
space into polyhedra. This method enables us to work. with geometrical objects that are in 
oneto-one correspondence with the atomic arrangement in the model. Its adequacy for the 
problem discussed is based on the fact that one of the fundamental objects of the theory-the 
Delaunay simplex-corresponds to an elementary hole that is an interstitial sphere inscribed 
between the four nearest atoms. This enables us to give a natural definition of the complex 
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hole as associated overlapping elementary interstitial spheres. For this it is necessary to 
know the atomic radius, the value of which has no exact definition in systems with a soft 
potential. We suggest compensating for this defect by percolation analysis of the Voronoi 
network, which offers the possibility to follow the overlap of the interstitial spheres in detail. 

This paper is organized as follows: In section 2 we briefly discuss all the main concepts 
of the Voronoi-Delaunay and percolation methods specific to the problem studied, and 
formulate our approach to the analysis of empty space. In section 3, computer models are 
described in which we investigate the empty space. Percolation analysis of the overlap of 
the interstitial spheres in OUT models is given in section 4. In section 5 a classification of 
aggregates of overlapping interstitial spheres (i.e. complex holes) by size and topology is 
reported. Finally, in section 6 we compare our classification of holes with that in the basic 
work of Bemal. 

2. Description of empty space 

2.1. Review of the previous papers 

It is evident that the empty space of a model is a simply connected region where wider 
areas are separated by narrow passages. Hence, empty interatomic space may be divided 
into separate cavities, each of which can be described by the configuration of the surrounding 
atoms. Bernal (1964, 1965) was the first to propose this method to describe the structure 
of simple liquids. He suggested to determine cavity configurations using a simplicial graph 
in which the centres of atoms-'the geometrical neighbours'-are connected. Eliminating 
the longest bonds in the simplicial graph, one can obtain a 'reduced' graph whose parts 
surrounding some empty space have the form of convex polyhedra. 

Bernal assumed that the variety of all these polyhedra can be reduced to five basic 
'canonical' types (figure 1). ' h o  of these, namely, tetrahedron ( U )  and tetragonal 
dodecahedron (e), are deltahedra, i.e. they contain only triangular faces. The empty 
interatomic space within any deltahedron must be considered as a separate cavity because 
triangular faces correspond to the densest packing of three atoms and therefore represent 
the narrowest passages or 'necks' separating different cavities. Further we will always 
mean by cavity only the cavity conjiguration in the deltahedron form. Here, a tetrahedron 
and tetragonal dodecahedron represent separate cavities. In contrast, the remaining three 
canonical polyhedra that also contain square faces, i.e. half-octahedron (b), trigonal prism 
( c )  and Archimedian antiprism (d) ,  are elements of larger deltahedra and do not define 
separate cavities. Thus, two half-octahedra involved in one octahedron determine not two 
separate cavities but a common one. 

Bemal's ideas on empty interatomic cavities were used by Whittaker (1978), 
Ahmadzadeh and Cantor (1981) and Frost (1982) to study computer models of simple 
liquids. A great variety of deltahedra were recognized in different models of dense 
disordered packings, which does not allow one to reduce the classification of cavities to a 
fairly small number of types. The authors did not succeed in representing this variety of 
deltahedra as a set of a small number of structural elements containing not only triangular 
but also square faces, not necessarily planar. The variety of these structural elements appears 
to be too large for a convenient classification. 

The discussed direction of studies seems to be completed by Lanqon et ul (1984). They 
showed that all the methods of constructing cavities (deltahedra) proposed earlier were 
nothing but different rules for joining elementary cavity polyhedra, i.e. Delaunay simplices 
(though the authors do not use this term). This indication makes it useful to study in 
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Figure 1. Bemal's canonical holes: (a) tetnhedron, (b)  half-octahedron, (c) trigonal prism, ( d )  
Archimedian antiprism (e) teh'agond dodecahedron. 

- 
more detail the relation between the problem of empty cavities and the Voronoi-Delaunay 
methods for dividing space into polyhedra. These methods have been used for studying 
different aspects of the structure of computer models (Hiwatari et a1 1984, Kimura and 
Yonezawa 1984, Medvedev and Naberukhin 1987a,b, Voloshin et a1 1989, Naberukhin et 
a l  1991). They offer further ways for investigating the problem of empty space. 

2.2. Voronoi-Dehunny language of dividing space into polyhedra 
This section contains only the main definitions.and facts, and the reader who needs 
mathematical details and proofs is referred to the specialist literature: Delaunay (1934, 
1947). Rogers (1964), Tanemura et a1 (1983), Medvedev and Naberukhin (1987a). The 
Voronoi polyhedron (VP) of a given atom is the region of space containing all points closer 
to the centre of this atom than to the centres of any others. The atoms whose~voronoi 
polyhedra have a common face are named geometrical neighbours. The set of vertices and 
edges of the Voronoi polyhedra of all model atoms makes up a network called the Voronoi 
network. 

The division of space into Voronoi polyhedra is closely connected with the altemative 
division into pelaunay simplices. The Delaunay simplex is a tetrahedron of an arbitrary 
form with vertices at the centres of four atoms each being the geometrical neighbour for 
the other three. A set of vertices and edges of all Delaunay simplices of the model makes 
up the above-mentioned simplicial graph or the Delaunay network. 

The relation between these two space divisions is characterized as follows (see figure 2). 
Each site of the Voronoi network, being a common VP vertex for four atoms (geometrical 
neighbours of each other), corresponds to the Delaunay simplex formed by these four atoms. 
The bond between two sites of the Voronoi network shows that the related simplic'es have one 
face in common. Hence, each site of the three-dimensional Voronoi network is connected 
with four other sites, i.e. the Voronoi network is four coordinated (or three coordinated in 
the two-dimensional illustration in figure 2). In perfect crystals, degenerate vertices are 
possible at which more than four VPs  meet; in the disordered systems discussed here such 
situations are actually non-realizable. 
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A site of the Voronoi network is also the centre of the sphere circumscribed around the 
corresponding Delaunay simplex because this site, being the vertex common for four VPs, 
is equidistant from the centres of all the four atoms. It can readily be demonstrated that 
this sphere cannot involve the centres of other system atoms-Delaunay theorem on the 
empty sphere (cf. Delaunay 1934, Tanemura et a1 1983). The centre of the circumsphere 
(diameter Do) coincides with the centre of the interstitial sphere of a given Delaunay simplex 
(diameter Dj) that touches all four simplex atoms but does not cross and does not contain 
any atom of the system. The diameters of both spheres are related by the expression: 

D i = D o - d  (1) 

where d is the atomic diameter. The interstitial sphere is the sphere of maximum possible 
diameter that can be inserted between the atoms of the given simplex. Thus, the Delaunay 
simplex represents an elementary cavity configuration of atoms. 

More complicated cavity configurations can be considered as a combination of several 
contiguous Delaunay simplices. Indeed, as has been mentioned, the cavity is represented 
by a polyhedron with triangular faces (deltahedron) constructed on a simplicial graph. Such 
a polyhedron can be always made up of Delaunay simplices. 

Thus, the perfect octahedral cavity configuration of atoms must consist of four simplices, 
each of which has five edges of equal length and a sixth one that is ,/Z times longer and is 
common for all of them and passes inside the cavity. A simplex of such form was called 
a quartoctahedron (Medvedev et a1 1988, Voloshin et a1 1989). Each of them shares two 
faces with the other two quartoctahedra of the same cavity, whereas the two remaining faces 
contact with two Delaunay simplices of other cavities. 

Hence, in composite cavities we must distinguish the internal faces that unite the 
Delaunay simplices into one cavity and the external faces that form the boundary between 
the cavities. The corresponding bonds of the Voronoi network will also be named internal 
and external. 

In order to construct complex cavities of the Delaunay simplices one must elaborate 
a criterion by which one could indicate the simplices that must be joined into a complex 
cavity and those that must be retained as single elementary cavities. We suggest here to 
join into a complex caviiy such Delaunay simplices whose interstitial spheres overlap. This 
criterion is rather clear (see figure 2) and especially useful since it enables us to formulate 
an empty-space problem in terms of percolation theory. Note that a similar criterion was 
used by Finney and Wallace (1981) to recognize cavities in dense sphere packings., 

2.3. Percolation approach 

The degree of overlap of  the interstitial spheres may be characterized by the parameter 

S . . - R . + R . - R . .  11 - I I ‘ I  (2) 

where Ri and Rj are the radii of the interstitial spheres of neighbouring Delaunay simplices, 
and Rjj is the distance between the centres of these spheres. For isolated spheres, the value 
of this parameter is equal, to the shortest distance between their surfaces with a negative 
sign; and for overlapping spheres, it is equal to the length of the common part of the line 
segment connecting the centres of the interstitial spheres. 

The S j j  parameter characterizes the bond of the Voronoi network that connects the 
neighbouring sites i and j (the centres of the corresponding Delaunay simplices). Hence, 
a number Si, can be assigned to each bond of the Voronoi network. Then, in order to 



Empty space in models of liquids 5689 

find well overlapped interstitial spheres it is sufficient to select (colour) the bonds whose 
Kparameter exceeds a certain chosen boundary value 6,. Complex cavities, i.e. aggregates 
of overlapping interstitial spheres, will correspond to clusters of contiguous coloured bonds 
on the Voronoi network. Such a n  approach makes it possible to apply the ideology of 
percolation theory, according to which our problem is characterized as the bond problem 
on a three-dimensional four-coordinated network. 

In the percolation approach, the boundary value 6, is gradually altered to change a 
fraction of coloured bonds p (on one and the same network) as well as the number of 
clusters of coloured bonds and their topology. For some critical value 6, the fraction of 
coloured bonds becomes so large that an 'infinite' cluster appears, i.e. a cluster spanning 
the whole model from one side to another. The value of this concentration, pc  (percolation 
threshold), is an important characteristic of both the network and the method of colouring 
its bonds. In the present paper we do not intend to perform a full percolation analysis of 
the Voronoi network for the ' 6  colouring', but restrict ourselves to studying clusters for 
one, 'natural' choice of the boundary value-namely, 80 = 0, which corresponds to the 
contact of two neighbouring interstitial spheres. We determine the percolation thresholds 
for S colouring, too. 

The method for uniting Delaunay simplices proposed by Lanqon er nl (1984) can also 
be formulated as a bond percolation problem on a Voronoi network. To this end, each bond 
of the Voronoi network should be characterized by the length of the maximum edge of the 
common face of the two Delannay simplices whose centres are connected by this bond; 
then the bonds for which this characteristic exceeds r, should be coloured. The Delaunay 
simplices involved in the same deltahedron according to this procedure will be connected 
on the Voronoi network by coloured bonds into one cluster. 

In the present paper we follow a similar logic but use another bond characteristic on the 
Voronoi network to unite the Delaunay simplices, namely the parameter of interstitial sphere 
overlap, 8 ; j .  Only those Delaunay simplices for which the bonds between them satisfy the 
condition > a,, are united into one cavity. This method seems more adequate for the 
problem of interatomic cavity construction. The edges of the Delaunay simplices are not 
represented on the Voronoi network and our method of constructing deltahedra does not 
require the removal of any edges. Some  of^ these are located on the deltahedron surface 
(forming triangular faces), and the remainder are situated inside. Evidently, the long edges 
that are rejected according to the Lanqon et nl procedure are, as a rule, internal in our 
deltahedra as well. However, some external edges of one of the deltahedra can be longer 
than the internal ones in other deltahedra. Therefore, the edge length is not a good criterion 
for uniting Delaunay simplices. 

- 

3. Models 

In the present paper we have mainly studied the liquid and crystal models calculated using 
the Monte Carlo simulation (Metropolis algorithm). Each model consisted of 108 atoms 
with the Lennard-Jones potential: 

U = 4 ~ [ ( u / r ) "  - ( u / ~ ) ~ I  (3) 

in the N V T  ensemble with periodic boundary conditions. The results for a liquid have been 
averaged over 10 independent models at reduced density p* = pu3 = 0.9 and temperature 
T* = kT/c  = 0.719. In addition to these models, which determine the instantaneous 
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structure of the liquid (I structure), we have studied models of the frozen structure of the 
liquid (F structure). These are intended to reduce the influence of random thermal motion 
to structural laws and were obtained from the corresponding I structures by freezing out 
the basic thermal fluctuations, i.e. by shifting particles towards the minima of their local 
potentials (Naberukhin etnl 1987). We performed the freezing by applying the Monte Carlo 
procedure to instantaneous structures at T* = 0 K and the previous value p* = 0.9. The 
acceptance rate was kept in the range from 35 to 65% by varying automatically the length 
of the maximum step upon relaxation. In 500-700 moves per atom this parameter decreased 
105-106 times and the relaxation ceased. The freezing caused a 20% decrease of the full 
potential energy of the system, whereas the vkiations in atomic coordinates were (0.1-0.2) 
U and no more than 0%. 

To study the crystal structure, *e I structures of the FCC crystal were generated by the 
Monte Carlo method at p’ = 1 and T* = 0.719. The results were averaged over five 
independent models. The model of 686 atoms with potential U = nr-lz, kindly supplied by 
Professor D K Belashenko (Moscow), was used as a model of the amorphous state. This 
model was calculated by molecular dynamics and then carefully relaxed by the steepest- 
descent method. The pair correlation function, go), of this model demonstrates all the 
characteristic peculiarities of the amorphous state, particularly the doublet splitting of the 
second maximum (Belashenko 1987). 

As a length unit we used the atomic diameter, which in Monte Carlo models was equal 
to the position of the minimum of the pair potential, and in the model of the amorphous 
state to the position of the first maximum of the pair correlation function. The periodicity 
of boundary conditions was taken into account when constructing the Delaunay simplices 
and Voronoi network. As a result, simplices situated near some boundaries involved both 
the atoms near the given boundary and the images of the atoms located at the opposite 
boundary. Similarly, clusters crossing the cell boundary involved simultaneously both the 
sites and the images of the sites of the Voronoi network. 

The concentration of coloured bonds at which an ‘infinite’ cluster appears for the first 
time was taken as the percolation threshold pc.  Taking account of the periodicity of boundary 
conditions, the cluster was considered ‘infinite’ if it involved the sites of the basic cell 
together with the images of these sites beyond its boundaries. 

V P Voloshin und Yu I Naberukhin 

4. Percolation analysis of the Voronoi networks 

Figure 3 depicts the distributions of the overlap parameter S for different models. In the FCC 
crystal the distribution is bimodal, which corresponds to two bond types: internal bonds 
in octahedral cavities (the right-hand maximum) and external bonds between tetrahedral 
and octahedral cavities (the left-hand peak). In other models it is impossible to correctly 
distinguish the two types of cavity. The disposition of the maxima in these distributions 
at negative 6 values near the location of the left-hand maximum in the crystal allows one 
to assume that these models also contain a great number of triangular faces formed by 
three densely packed atoms. The corresponding bonds of the Voronoi network are sure to 
be external. However, there is no natural boundary between external and internal bonds 
in disordered systems. We will use the boundary value SO = 0, which corresponds to the 
minimum in the distribution for the crystal and has a clear geomeiical meaning (see section 
2.2). 

In all our models the colouring of only internal bonds (with 6 > 0) gives no infinite 
cluster. To obtain such a cluster, it is necessary to colour some external bonds with the 
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Figure 2. Two-dimensional illustration of the space 
division into Voronoi polyhedra (Q) and DelaUnay 
simplices (b). In (b) the circumsphere around one 
of the simplices is shown by a thin broken circle 
whose  centre^ is defined by the Voronoi network site 
A. Each circumsphere corresponds to an interstitial 
sphere according to formula (I) and all such spheres 
are presented in (a). Overlapping interstitial spheres 
make up, by our definition, complex cavities. For 
example, the large hole in the centre of the figure is 
made up of three overlapping spheres (a), and its cavity 
configunrios (b) is composed of lhree contiguous 
Delaunay simplices (internal edges are given by broken 
lines). This cavity configuration is represented on the 
Voronoi network (a) as a cluster of 'coloured' (thick) 
bonds. which con6ect the cenhes of the three simplices 
composing the cavity. 

F i b  3. Distributions of the bonds of the Voronoi 
network according to the degree of overlap of the 
corresponding intersfitial cavities (S distribution) in 
different models: (a) FCC crystal, (b) I s t ~ c t u r e  of 
liquid, ( e )  F structure of liquid,.(d) amorphous solid. 
Shaded is the region corresponding to the network 
bonds that are coloured at the percolation threshold. 
The position of its boundary refers to the value S, 
presented in table 1. 

. .  
. ,  

~~ 

highest value of~parameter S as well. Table 1 lists the values of the percolation thresholds pc 
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in the 6 colouring together with the corresponding critical values of the colouring parameter 
8,. It is seen that the crystal has the smallest value of 6, and the I structure of the liquid has 
the largest. The threshold concentration pc  is the lowest in the crystal, and the highest in 
the amorphous substance, although the difference is quite small. In the random colouring of 
bonds on the same Voronoi networks, the threshold concentrations are similar for different 
models, 8, = 0.406 i 0.029, and practically coincide with the threshold for the random 
colouring of bonds on the diamond network, pc  = 0.388 (Stauffer 1985). Both of these 
numbers are substantially less than the threshold values for the 6 colouring. 

Table 1. Characteristics of the S colouring: ps. percolation threshold; S,, critical value of the 
overlap parameter; m. concenmtion of coloured bonds at SO = 0. 

P S  S. m 
Fcc crystal 0.543 f 0.015 -0.211 0.339 
Liquid 1 smcture 0.565f. 0.021 -0.120 0.408 

F mcture 0.577 f 0.023 -0.154 0.374 
Amomhous solid 0.587 -0.199 0.270 

Thus, the cavities formed by the colouring of only intemd bonds (8 2 0) fail 
to percolate: they are small, substantially smaller than in a percolating cluster. The 
bond clusters corresponding to such cavities are spatially more compact than the clusters 
of randomly coloured bonds on the same network; this increases the coloured bonds’ 
concentration necessary for the appearance of percolation. 

We will further consider cluster properties of the bond coloured Voronoi network at 
6, = 0. Each of the clusters corresponds to an isolated cavity (as 60 t &). All the bonds 
of the cluster are intemal bonds of this cavity and correspond to faces joining the simplices 
that constitute the given cavity configuration (see figure 2). The boundary value 60 = 0 
determines a particular concentration value of the coloured bonds pa in each model (table 1). 
For the I structure of the crystal, the coloured bond concentration is nearly equal to 113, 
i.e. to a fraction of such bonds in the perfect Fcc crptal. It is substantially higher in the 
I structure of the liquid. The value of PO decreases when passing to the F structure but 
has the smallest value in the amorphous structure, 1.2 times lower than that in the crystal. 
This correlates with a great number of tetrahedral configurations in the amorphous solids 
(Kimura and Yonezawa 1984, Medvedev and Naberukhin 1987a, Voloshm et a1 1989). 

The number of coloured bonds connecting any site with other sites can vary from zero 
to four. At random colouring the fraction of sites f, having n coloured bonds is described 
by the binomial distribution 

Figure 4 compares the 6 and the random colourings. All the models demonstrate similar 
deviations from the random distributions, though to a different degree. We see in our models 
a greater number of sites with zero, two and four bonds (except sites with four bonds in 
the crystal) and fewer sites with an odd number of bonds. Hence, clusters of one Delaunay 
simplex (tetrahedral configurations) and clusters in the form of rings and chains are more 
frequent than at random colouring. 

Thus data in table 1 and figure 4 demonstrate a significant correlation in dispositions of 
the elementary cavity configurations. They reflect definite regularities in the systems named 
disordered. 
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5. Cavitpdassjfication 

This section is devoted to the topological and metric properties of clusters from contiguous 
intemal bonds of the Voronoi network for which parameter 8 is not less than zero, i.e. we 
will consider the shape of associated cavities formed by overlapping interstitial spheres. 

5.1. The number of sites in a cluster 

The simplest cluster characteristic is the number of network sites belonging to this cluster. 
For convenience of cavity classification, we will call an isolated site corresponding to a 
separate non-associated simplicial cavity a cluster, too, though it has only one site. Figure 5 
depicts the distributions of cavity clusters in different models according to the number of 
sites. The perfect FCC crystal contains cavities of only two types, namely perfect tetrahedral 
and perfect octahedral, the number of tetrahedral cavities being twice as large. For a weak 
distortion of the perfect crystal structure, tetrahedral cavities will correspond to clusters of 
one site, and the octahedral ones to those of four or five sites depending on the character 
of the distortion (Voloshin et al 1989). A similar pattern is observed in our model of a 
thermally excited FCC crystal (figure 5(u)). Clusters with a different number of sites, mainly 
with two sites, make up only about 2% of the total number of clusters on the network. 

The distributions for models of disordered packings, i.e. I structures and F structures of 
the liquid (figures 5(b)  and (c))  and the amorphous state (figure 5(d)), are practically the 
same. Each of them, like the FCC crystal, contains a great number of clusters involving only 
one site. The I and F structures contain ,a smaller number of such clusters than the crystal 
while the amorphous state displays a larger number. However, the distributions of other 
clusters differ considerably from the crystalline ones. The main difference is that there are 
much less clusters with four sites and much more clusters with two sites; besides, clusters 
of seven and more sites appear. Thus we have enormous clusters with more than 14 sites 
in the I and F structures of the liquid. A cluster of complex form containing 58 sites was 
discovered in one of the I structures. 

As seen from figure 5 there are no clusters with more than 15 sites in either crystal or 
amorphous state, and there are few of them in the I and F structures of the liquid. It might 
seem that they could be easily neglected when describing the liquid structure. However, the 
distribution of the cavity polyhedra volume fraction corresponding to clusters with different 
numbers of sites demonstrates that large clusters with 15 or more sites make up almost 15% 
of the model volume for the liquid F structure (figure 6(u)); in the I structure this fraction 
amounts to 20%. 

It is interesting to compare this distribution obtained by colouring the Voronoi networks 
with the boundary value 60 = 0 with that for the same Voronoi networks but coloured with 
60 = 0.1 (figure 6(b)).  For this distribution, the volume fraction of the large clusters reduces 
to 2%. Decay of the large clusters causes the increase of the volume fraction of the smallest 
cavities, particularly those with one site. The new colouring decoloured the weakest bonds, 
i.e. those in which the interstitial spheres of ,the Delaunay simplices overlapped by no more 
than 0.1. Hence one may conclude that the large cavities consist mainly of relatively weakly 
bound, i.e. weakly overlapping, small cavities. 

It is now to be determined which of the small cavities are most frequent and therefore 
most interesting for cavity classification. 

~ ~ 

5.2. Connectivity index 

The number of sites in a cluster is its full characteristic only when the cluster consists of one 
or two sites. More complex clusters can display a different topology for t h e s m e  number 
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Figure 4. Distributions of the Voronoi network sites 
according to,the number of coloured bonds in which 
they engage, n, for different models. Shaded columns 
correspond to the 6 colouring with the boundary 
panmeter So = 0, and unshaded ones to the random 
colouring of the m e  Voronoi network at the same 
coneenmion pe calculated by f o d a ( 4 )  (see table 1). 
Model notations coincide with figure 3. 

Figure 5. Disvibutions of clusten (associated cavities) 
according to the number of Delaunay simplices, Nso, 
of which they consist. 8 colouring at So = 0. Notations 
are the same as in figure 3. 

of sites. It is necessary to introduce some new characteristics to distinguish not only the 
size but also the topology of clusters. We use here a connectivity index composed of four 
numbers n I n2 n3 n4. where ni is the number of cluster sites having i bonds, which connect 
them with the other sites of the given cluster. For a tetrahedral cavity, the connectivity 
index is 0000; for clusters consisting of two sites it is 2000; an octahedral cavity made 
up of four quartoctahedral Delaunay simplices has the index 0400; the index of clusters 
with three sites' can be 2 1 0 0 or 3 000 depending on their topology; etc. 

Table 2 gives the connectivity indices for Blmost all small clusters observed in all the 
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four models with the boundary value So = 0, and indicates the number of such clusters in 
each of them. At the bottom of the table there is the index for the largest cluster of 58 sites 
in the liquid I structure. Figure 7 depicts the graphs of the most important clusters. 

When the cluster is small, the connectivity index determines the cluster topology 
unambiguously; but for larger clusters, there, is no such correspondence. Therefore, to 
determine the cavity shape, we will use, in addition to the connectivity index, some metric 
characteristics of the Delaunay simplices that constitute the cavity, such as the radius of the 
interstitial sphere and the tetrahedricity and octahedricity of the simplex, introduced in the 
articles of Medvedev and Naberukhin (1987a, b), Medvedev et al (1988) and Voloshin et al 
(1989). Tetrahedricity T and octahedricity 0 of a simplex are quantitative measures of the 
deviation of simplex shape from the shapes of a perfect tetrahedron and quartoctahedron 
(a quarter of a perfect octahedron). As in the above articles we assign to good (slightly 
distorted) tetrahedra all the simplices with T < 0.018 and to good quartoctahedra the 
simplices with 0 c 0.030. For brevity, we will not document metric characteristics of all 
the simplices discussed and will restrict ourselvks to two examples (tables 3 and 4). 

5.3. Cluster statistics 

Consider the clusters that according to table 2 are the most frequent in our models. In all 
the models the clusters with index 0000 previil, which consist of one site and undoubtedly 
represent isolated tetrahedral cavities. This is confirm4 by the data-on simplex size and 
shape in table 3. (Only in the liquid I structure are the simplices not good tetrahedra on 
average.) 

The cavities of the nextclass, which are widely represented in liquids and amorphous 
solids and are rarely observed in F c c  crystals, consist of two Delaunay simplices and have 
the connectivity index 2000. Metric characteristics show that most of these simplices have 
no relation to either good tetrahedra or good quartoctahedra. 

Clusters consisting of three sites can have~the indices 0300 and 2 100 (see figure 7). 
Note that such clusters are practically absent in crystals, whereas in liquid and amorphous 
states the clusters with index 2 1 0 0  prevail. The simplices involved in cavities with this 
index as well as the simplices of cavities with index 2000 have no definite shape. 

Figure 6. Volume percentages of clusters with a 
given number of Delaunay simplices, Nso, for the 



5696 V P Voloshin and Yu I-Naberukhin 

Table 2. Numbers of cavities of n intentitid spheres with a given index in different models. 

Liquid 
fCC Amorphous 

n Index crvstal IStlUctm Fstructure solid 

1 0000 

2 2000 

3 0300 
2100 

4 0400 
1210 
2200 
3010 

5 0401 
0500 
1310 
2300 
3110 

6 0420 
0501 
1311 
1410 
2220 
2301 
2400 
3210 
4020 
4101 

7 0502 
0520 
060 1 
1330 
1411 
1510 
2221 
2320 
2500 
3130 

58 7241512 

1384 

309 

11 
72 

129 
3 

19 
4 

U 
I8 
49 
16 
4 

2 
5 
5 

. 8  
3 
1 
2 
8 
2 
1 

7 
5 

19 

3 
15 

7 

1 
1 

- 

- 
- 

Total 1600 2323 

1700 

321 

6 
87 

186 
2 

21 
4 

21 
10 
47 
8 
3 

- 
6 
4 

13 
5 

3 
3 

- 

- 
- 

5 
8 

21 
1 
2 

16 
1 
2 
1 

- 
- 

2765 

1610 

266 

3 
89 

163 
1 

12 
6 

15 
8 

20 
12 
- 
- 

3 
3 
2 
- 
- 

I 
2 
- 
- 

- 
2 

10 
- 
- 

18 

2 
2 

- 

- 
- 

229 1 

Clusters consisting of four sites can have six different indices. However, only four of 
these were realized in all OUT models (see figure 7). Most frequent are the clusters with 
index 0400. They are mostly observed in Kc crystals. This is not surprising because both 
the topology of this cluster and the characteristics of the shape and size of its simplices show 
that this cluster corresponds to a weakly perturbed octahedral cavity. Other clusters of four 
sites mostly involve clusters with index 2200. The topological and metric characteristics 
of their simplices are similar to those of ‘linear’ clusters with the indices 200 0 and 2 100. 

For clusters consisting of five sites, the number of possible indices reaches several 
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1 0000 

2 2000 H 
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.\ 3010 /O-O 

Figure 7. Graphs of the most frequent clusters 

Table 3. Characteristics of clusters with index 0000. 

Liquid 
FIX Amorphous 
crystal Istructure Fstmclure solid 

Radius of inter- 0.119 0.129 0.133i0.016 0.119 

Volume 0.117 0.117 ' 0.12'2 i 0.006 0.116 
Tetrahedricity 0.008 0.015 0.009 & 0.007~ 0.009 
Oaahedricity 0.055 0.047 0.047.A 0.016 0.049 

. . ,  

stitial sphere 

dozens, the number of topological types being even lher. In our models only five of the 
above indices have been recorded. The most~numerous are clusters with index 1 3 10. This 
index corresponds to clusters of two topological types (see figure 7): The fint type can be 
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Table 4. Characteristics of clusters with index 040 1. 

Fcc crystal F mcture of liquid 

Sites with Sites with Sites with Sites with 
two bonds four bonds ~ two bonds four bonds 

Radius of inter- 0.193 0.194 0.198i0.014 0.202iO.012 

Volume 0.113 0.023 0.114+0.012 0.049-tO.019 
Tetrahedricity 0.048 0.072 0.047 & 0.003 0.067 & 0.004 
Ocmhedricity 0.011 0.080 0.017 -t 0.013 0.074 & 0.006 

stitial sphere 

considered as a combination of two clusters with the indices 0 3 0 0  and 2000.  However, 
such clusters seem to be rare, as there are only a few clusters with index 0 3 0 0. The second 
type can be considered as an addition of a distorted te!xahedron to a distorted octahedron 
0400.  

Almost the same number of clusters have index 0 40 1. Figure 7 depicts the topology of 
the cluster with this index, and table 4 gives the characteristics of the simplices for the FCC 
crystal and the liquid F structure. It is seen that in both crystal and liquid the sites with two 
bonds in this cluster are good quartoctahedra, and the site with four bonds corresponds to 
the simplex with the same radius of  the interstitial sphere, with high values of tetrahedricity 
and octahedricity, and a very small volume. Earlier (Voloshin et a1 1989) we showed that 
such simplices (named K i j B  simplices) can arise from the division of distorted octahedral 
cavities into Delaunay simplices. The Kij€ simplex is an almost planar squae, its edges 
being formed by the edges and diagonals of the square. Thus, clusters with the connectivity 
index 040 1 should be referred to as octahedral cavities with the same degree of distortion 
as in clusters with index 0 4 0 0. 

Among other clusters with five sites those with the indices 0500 and 2300 are the 
most interesting, as they are absent in FCC crystals. The former represent fivemembered 
rings consisting of contiguous Delaunay simplices and correspond to pentagonal faces of the 
Voronoi polyhedra, a great number of which were found to be a specific feature of a liquid 
structure (Bernal 1964, Medvedev and Naberukhin 1987% Voloshin et nl 1989). Clusters 
with index 2 3 0 0  belong to the abovementioned class of ‘linear’ clusters or chains. 

The number of clusters with six sites is much fewer. Especially interesting are clusters 
with index 1 4  1 0. There are three variants of topology for these (figure 7). However, the 
simplex characteristics, as in the case with index 1 3  10, show that most of these clusters 
correspond to distorted octahedral cavities with an added chain 2000; hence, their topology 
corresponds to the second variant in figure 7. 

Among the clusters with seven sites, special attention is drawn to the indices 0 6 0 1 and 
15 10. The latter seems to correspond to the combination of distorted octahedral cavities 
and much longer ‘linear’ clusters (the second variant of topology in figure 7). Cluster 0 6 0 1 
is interesting because, just like a cluster with index 040 1, it involves a simplex with four 
bonds. In the second variant of topology presented in figure 7, the central simplex with 
four bonds must be similar to the Kip simplex in cluster 040 1. However, this possibility 
must be rejected because the volume of this central simplex is practically the same as the 
volumes of other cavity simplices. Clusters with index 06 0 1 seem to belong to the first 
variant (two four-membered rings with a common site). This topological type is nothing 
but the fifth canonical Bernal polyhedron, the tetragonal dodecahedron. 
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6. Bernal holes 

As has been mentioned, only two of the canonical Bernal holes can be considered as 
isolated, separate cavities. These are the tetrahedron and tetragonal dodecahedron (see 
figure 1). All the rest have square faces that must match each other when filling the space. 
According to Bernal statistics, most of these holes belong to semioctahedra. Therefore, 
it might be concluded that the square faces of other holes will be capped by these ones. 
Thus, one should consider not the canonical but five modified holes with triangular faces 
only (also introduced by Bern&), namely tetrahedron, octahedron, trigonal prism with three 
half-octahedral caps, Archimedian antiprism with two half-octahedral caps, and tetragonal 
dodecahedron. The connectivity indices of all these cavity types are presented in table 5, 
the two last being deduced when &e possibility of the presence of KijC simplices on the 
square faces is ignored. 

Table 5. Volume percentage of polyhedra. 

Finnev Fimev This 
Cavity type Index B a a l  1.2 1.3 Lanp work 

Tetrahedron 0000 .48.40 19.01 4024 71.04 24.71 

O 4 O o  13.2 6.66 . 15.77 20.69 15.81 
0 4 0 1  

Octahedron 

Tetragonal 
dodecahedron 0601 14.80 5.15 9.14 3.77 2.27 

Trigonal prism 
with caps 0 6 2  1 20.52 0.49 3.75 1.05 0.96 

Archimedian anti- 
prism with caps 0 6 4 1  3.16 1.21 3.03 0.05 - 

Other W D ~ S  - 67.48 28.07 3A0 56.25 

Table 5 shows percentages of various modified cavities.~in the models of hard spheres 
by Befnal and Finney and in the models with soft interatomic potentials: results of -con 
et al (1984) and our data for the F structure of a liquid. Data for the modified cavities in 
the Bernal model were derived~from statistics of canonical holes (Bernal 1964). For the 
Finney.models we quote the results of an analysis by Frost (1982) at two 'values'of the 
maximum edge length of the cavity polyhedra. All the authors agree on the predominance 
of tetrahedral holes. In all models except Bernal's, octahedra occupy the second place. 
Non-rigorous visual methods of determining the holes in the Bernal model have evidently 
led to the overestimation of the number of tetragonal dodecahedra and especially trigonal 
prisms. Other methods of hole analysis give the same result: the number of the three 
largest Bernal holes is subsrantially less than that of tetrahedra and octahedra. Among them 
the tetragonal dodecahedron is more frequent, as we have already mentioned above when 
discussing our models. 

According to our data all the Bernal's holes occupy less than 50% of the liquid volume. 
The remaining volume belongs to holes represented by linear clusters of Delaunay simplices 
and also to cavities of a more complicated configuration. These linear clusters cannot be 
revealed by other methods of determining the hoIes, since the removal of the long edge 
performed by all of these methods leads to the joining of .all the simplices sharing this 
edge and to the appearance of a ring on the Voronoi network, which corresponds to these 
simplices. Nevertheless, non-canonical holes are present in great number in Finney models. 
LanGon's data, which, in contrast, give a small number of such cavities, stand separately. 
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This seems to result from a very soft repulsive part of the potential in their model and from 
the thorough relaxation carried out to obtain an amorphous state. These factors also lead 
(as we will show elsewhere) to the increase in the number of tetrahedra. 

7. Conclusion 

Following Lanfon et a1 we consider that interatomic cavities must be constructed from 
Delaunay simplices, since the latter are elementary cavity configurations. However, the 
simplices must be joined by their faces and not by their edges because it is the face that 
determines the size of the passage (the 'neck') between simplicial cavities. In such a way 
we can easily formulate the problem of cavity classification in terms of percolation theory 
by means of colouring the bonds of the Voronoi network, e.g. according to the degree of 
overlap of the interstitial spheres (8 colouring of bonds). This is one of the realizations of 
a general idea-the structure of liquids as a percolation problem on the Voronoi network 
(Medvedev et a1 1988, Naberukhin et a1 1991)-specified for studying empty interatomic 
space. 

Analysis of clusters of Delaunay simplices representing interatomic voids shows that a 
simple classification of cavities in dense disordered substances is impossible. The reason is 
that a substantial part of the volume is occupied by cavities of complicated configurations 
consisting of a great number of simplices (n > 10 in liquids). These large cavities are 
wormlike rather than spheroidal (what was implied by Bemal in his pioneering works). The 
chains of cavities are branched; they unite some rings of the simplices and other associated 
cavities. AI1 this results in an enormous variety of cavity forms. 
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